Interfacial assembly of ZnO quantum dots into giant supramolecular architectures.

نویسندگان

  • Mohammed Ali
  • Sudip Kumar Pal
  • Hasimur Rahaman
  • Sujit Kumar Ghosh
چکیده

Para-aminobenzoic acid (PABA) stabilised zinc oxide (ZnO) quantum dots (QDs) have been synthesised by refluxing zinc acetate dihydrate in methanol under alkaline condition and re-dispersed into water by centrifugation. Aqueous dispersion of PABA-stabilised ZnO QDs was taken with seven different organic solvents in test tubes and subjected to diazo reaction under specified conditions. It was seen that the quantum dots assembled into diverse superstructures depending on the nature of the immiscible solvent at the aqueous-organic interface. The assemblies so obtained have been characterised by energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR), fluorescence and Raman spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA), optical, fluorescence and scanning electron microscopic (SEM) images. It has been observed that the ensuing supramolecular assemblies exhibit significant electrical conductivity and photoluminescence properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that cons...

متن کامل

Further Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material

Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...

متن کامل

Assembly of quantum dots in polymer solar cells driven by orientational switching of mesogens under electric field

In-situ synthesis and rapid assembly of CdS quantum dots (QDs) in main-chain liquid-crystalline polymer poly(2,5-bis(3-alkylthio phen-2-yl)thieno[3,2-b]thiophene) (PBDTTT-C12) and side-chain liquid-crystalline polymer poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4, 5-b0]dithiophene-alt-3,6-bis(thiophen-5-yl)2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione] (PBDTDPPcbp) was formed. This was driven by the ...

متن کامل

Synthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells

In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, F...

متن کامل

Polar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures

Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to freestanding spheroidal ZnO quantum dots and to spheroidal ZnO quantum dots embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotrop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 16  شماره 

صفحات  -

تاریخ انتشار 2014